DTIP 2013

Pyroelectric PZT sensors screen printed on glass

Benoît CHARLOT, Denis COUDOUEL, Philippe COMBETTE, Alain GIANI

IES Institut d'Electronique du Sud CNRS Université Montpellier II Place E. Bataillon, 34095 Montpellier - France

Introduction **Pyroelectrics Screen Printing PZT** sensor Poling Pyroelectric characterization Piezo **Thermal loading** Water Jet Microfluidic Conclusions

Pyroelectrics

Ferroelectrics : Internal polarization

→ Piezoelectrics : Polarization changes with stress

Pyroelectrics : Polarization change with temperature variation

$$I_{pyro} = pS_{el} \frac{dT}{dt}$$

! Measure only temperature variations

Pyro coef. from 30 to 200 (µC.m⁻².K⁻¹)

Applications : Bolometers, IR detector, presence detector, fingerprint sensor Terahertz detectors

Screen printing

Localised transfer of lnk paste through a stencil on a mesh.

Glass substrate 2x Silver Electrodes 3x PZT (15µm each) Hardening 10mn 120°C Firing : 650°C (instead of 850°C) Passivation : Si₃N₄ PECVD Deposition

PZT paste from Smart Fabrics Inks

Screen printing

Surface 8mm²

Poling

Ferroelectric materials needs to be polled in order to align the domains and to maximize the internal polarization.

200°C. 160V 3.2 MV.m⁻¹ 10mn

Pyroelectric Characterization

The current is monitored with a shielded Keithley 6514 electrometer.

Temperature on the sample is measured with a thermocouple placed on the sample surface and its time derivative is computed

P= 67 μC.m⁻².K⁻¹

P≈100 on ceramics fired @ 850°C

Piezoelectric

Mechanical oscillations on natural frequency Measured with the piezo effect Mechanical escapement

- Different clamping position, different resonant frequency

- Damping

Water Jet

Thermal Stimulation with jet of hot and cold water

9

Microfluidic

Microfluidic channel aligned on top of Pyroelectric element

PDMS bloc with a single channel / inlet / outlet

O₂ plasma bonding permanent bonding Or mechanical clamping

Syringe pushers connected to inlet with a T junction

3mmx1mm cross section

Sequential streams for Temperature gradients

Measurement

12

Toward micro power generation

The device can be used as a micro power generator

- Waste heat collection : Hot and cold water sources
- + pressure (or gravity) to circulate the flow

Maximum Carnot efficiency

$$\eta_{\rm max} = 1 - \frac{T_c}{T_h}$$

 \boldsymbol{T}

Output power not measured

Electrical charge must be adapted

Problem : sequential flow H+C...

Flow focusing

Flow focuring allows the creation of droplets in non miscible fluids

Using two phase non miscible liquids as hot and cold sources :

One pressure input

To be evaluated....

Conclusions

PZT thick film screen printed on glass

Pyroelectric and Piezoelectric behaviour

Streams of consecutive hot and cold water fed through a microfluidic channel

Positive and negative pulses -> pyroelectric current

Potential use in waste heat micro power generation

Optimisation :

Material coefficient Substrate (losses) non miscible liquids (one pressure source)