# Micropatterning and casting PEDOT-PSS /DMSO layers

Benoît Charlot, Gilbert Sassine, Alexandra Garraud, Alain Giani, Philippe Combette

IES Institut d'Electronique du Sud CNRS Université Montpellier II Place E. Bataillon, 34095 Montpellier - France







#### **Outline**

```
Introduction
PEDOT:PSS deposition
Soft lithography techniques
     Casting
     Stamping
Shadow masking
Lithography techniques
     Lift off
     Protection layer
Applications
Conclusions
```

### Introduction

#### **PEDOT:PSS** is a blend of polymers:

**PSS**: polystyrene sodium sulfonate

**PEDOT** poly(3,4-ethylenedioxythiophene)



- low temperature, low cost process
- Often use in organic solar cells
- Candidate for the replacement of ITO
- Organic electronics, large area display

#### But:

- low charge carrier mobility
- Sensitive to moisture, water and UV

#### Issues of patterning

Ink-jet printing, vapor deposition through shadow masks, soft and hard imprint lithography, and photolithography



R=5.10<sup>-3</sup> ohm.cm<sup>-1</sup> Work function 5.2 eV

### **Bioelectrode**

PEDOT-PSS is a candidate material for bioelectrode Improvement of the neural tissue-electrode interface and lifetime of implants

- highly electroconductive
- hydrophilic and biocompatible
- Softness

Microelectrode arrays for the capture of cardiac and neuronal signals





A.Blau et al. Biomaterials Volume 32, Issue 7, March 2011





Shingo Tsukada et al. Plos One Volume 7, Issue 4, April 2012

Highly Conformable Conducting Polymer Electrodes or In Vivo Recordings



D. Khodagholy et al. Adv. Mater. 2011, 23, H268–H272

# PEDOT:PSS deposition

Spincoating 3000 rpm Th=100nm and drying on hotplate 125°C

Wetting issue can be solved by adding IPA

Mean Resistivity PEDOT:PSS only : R=6 O.cm<sup>-1</sup>

Additives for increasing conductivity

Ethylène glycol  $C_2H_6O_2$ Glycerol  $C_3H_8O_3$ Sorbitol  $C_6H_{14}O_6$ Dimethyl Sulfoxide DMSO  $C_2H_6OS$ Erythritol  $C_4H_{10}O_4$ 

Mean Resistivity PEDOT:PSS / DMSO  $R=5.10^{-3} \Omega.cm^{-1}$  Mean Resistivity PEDOT:PSS / EG  $R=6.10^{-3} \Omega.cm^{-1}$ 





# Casting in PDMS

Goal: obtaining deformable electrodes in PDMS for large deformations Direct metalization Problems: Inclusion / deposition of metals in PDMS adhesion problems / cracks

#### **Cristallization of PEDOT:PSS in PDMS grooves**

Hydrophilisation: Oxygen Plasma

Filling, squeegee: scrapping with a glass blade

Hot plate cristallization

Repeat...





Wettability issues in PDMS, volume diminution during cristallization

# **Casting from PDMS**

Deposition of PEDOT:PSS patterns from a PDMS scaffold













Liquid PEDOT:PSS droplet

Pressing

Hot plate cristallization

Residues cleaning: Reactive ion etching







### PEDOT:PSS selective deposition

Selective deposition of PEDOT:PSS using hydrophobic surfaces



Jung Ah Lim et al. Appl. Phys. Lett. 95, 233509 (2009)

### Shadow masking

Use of metal shadow mask





Need of a perfect contact between mask and substrate Limitation on design (free standing structures and size) Magnetic clamping

# Lithography

#### **Issues**

- PEDOT:PSS films are damaged by aqueous solutions, which are standard developers in conventional photolithography
- acid-sensitive photoresists are affected by the acidic PEDOT:PSS.

#### 3 solutions:

- Lithography before PEDOT deposition: Lift off
- Protection coating on PEDOT layer

#### And:

- Specific photoresists Developed with hydrofluoroethers



P. G. Taylor et al. Adv. Mater. 2009, 21, 2314–2317

# Lithography: Lift off







Or DMSO (AZ2020)



**U-shape structures** 

### Lithography with protection: Parylene

Example: use of Parylene-C as

protective layer

PEDOTS:PSS thin layer

Parylene

**Photoresist** 

Reactive ion eetching of Parylene and

**PEDOT** 

**Peeling** of parylene (weak adhesion)





J.A. DeFranco et Al. Organic Electronics 7, 22–28

Peeling Parylene limits the shape of patterns : continuous structures

### Lithography with protection: Aluminum

Blend of PEDOT:PSS IPA PMMA

Virginia Chu and Joao Conde, INESC MN, Lisboa, Portugal

57 μm bridge TiW gate w =10 μm

And addition of CNTs attached by

surface functionalisation

Use of Aluminium for both Hard mask for etching and Sacrificial layer

Wet etching of Aluminium compatible with PEDOT:PSS compound





P. M. Sousa, APPLIED PHYSICS LETTERS 99, 044104 (2011)

### Lithography with protection: Si<sub>3</sub>N<sub>4</sub>

#### Silicon Nitride protection layer





PEDOT:PSS deposition  $SiN_x$  **PECVD** deposition **(200°C)** 100nm Lithography RIE selective etching CHF3 for  $SiN_x$   $O_2$  for PEDOT:PSS



Flat profile, but requires precise etching control

### **Applications**

Electrodes for all polymer pyroelectric sensor

**Carbon Nanotube interface with PEDOT:PSS** 





PEDOT / PVDF / PEDOT

Deformable electrodes for tactile sensor

(graphite PDMS force sensor)

**BioElectrodes for electrophysiology** 





#### **Conclusions**

PEDOT:PSS is an interesting material for implementation of deformable electrodes in several applications

Patterning techniques includes

- Soft lithography
- standard lithography / RIE etching with process adaptation

Potential use in bioelectrodes for neuro interface

Further work:

Effect of RIE on polymer, degradation? Best gazes for etching CHF<sub>3</sub>? CF<sub>4</sub>? O<sub>2</sub>