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Abstract— This paper presents a full fingerprint verification 

system. It is composed of a tactile fingerprint sensor, integrated 

read out and conversion circuits, and dedicated recognition 

algorithms. The sensor is a single line sweep mode sensor, e.g. 

it is made of single line of sensing elements, thus covering the 

minimum surface of silicon. Compared to cm
2
 sized touch 

sensors, it offers a large cost reduction and possibility of easy 

integration into portable devices. The use of a single line to 

measure fingerprint requires the user to sweep its finger along 

the sensor. This sensing scheme produces fingerprint images 

with several distortions that needs further image processing to 

allow efficient fingerprint recognition. This is why we 

developed and present here specific algorithms to take care of 

the sensor’s specifications. The paper will present 

measurement results as well as a performance evaluation of the 

entire verification system.  

 

Index Terms— Fingerprint Verification, MEMS, Cantilever, 

CMOS, bulk micromachining, Sweep Sensor, Tactile sensor, 

Enhancement, Distortion, Performance Evaluation.  

I. INTRODUCTION 

iometrics[1] is the extraction of physical or behavioral 

parameters peculiar to a person with the aim of 

identification in a reliable way. Several personal biological 

characteristics are now used in biometric systems; it is for 

example iris, fingerprint, voice or face. These biological 

characteristics are unique and thus more reliable to identify 

people than traditional methods based on features that we 

have (key, card) or we know (password). Biometrics is now 

appearing in several part of our everyday life such as 

building access, and computer login. Within all biometric 

techniques, digital fingerprint recognition is the most widely 

used for personal identification with quite the half of the 

total biometric market [2]. It is no longer associated only 

with police and has been accepted by a large part of the 

population as a fast, secure and easy way of personal 

identification.  

A fingerprint is a set of ridges and furrows with singular 

points, mainly ridge ending and bifurcation, called minutiae 

(Fig. 1). This pattern is universal, permanent and unique for 

each person [3]. 

Usually, acquisition of a fingertip image has been made 

with the use of ink and paper. Optical devices were created 

in order to automate this task. Most of these optical sensors  

 

are made with a CCD sensor and prismatic optics. They are 

mainly used for building access control and remain costly 

and bulky for any other application. Thanks to the 

emergence of low cost integrated devices, biometric 

 
 

identification that was previously reserved for security 

applications is now reaching several other applications. 

Integrated fingerprint sensors have become indeed a mass-

market application, and nowadays we can find such devices 

in cell phones and laptop computers. 

 
Fig. 1. Example of minutiae from a fingerprint. 

Most integrated fingerprint sensors have been developed 

with microelectronic silicon technologies. Several 

measurement techniques have been developed so far for the 

capture of fingerprint [4]. The most employed is the 

capacitive technique [5]-[9] where the device senses the 

electrical capacitance between the skin (ridges in contact or 

valleys) and a reference electrode on the surface of the 

sensor. Other techniques such as thermal [10]-[11], 

pyroelectric materials, optical [12]-[13] or mechanical [14]-

[15] transduction mechanisms have also shown great 

potentials and successful results. 

Among different fingerprint sensors, we see three kinds 

of acquisition mode as depicted in Fig. 2. Full matrix 

sensors, also called touch sensors, are the most common 

type. It requires the user to press his finger on top of the 

sensor surface for the capture. The image is available 

instantaneously and without spatial distortion except 

misalignments and rotations. The drawback is the large 

required surface (>1cm!), which leads to costly sensors. In 

order to overcome this problem, sweep sensors have been 

developed [17]. Users have then to sweep their finger along 

the sensor. Most of them use a partial matrix that contains a 

reduced number of lines (typically from 8 to 40). The 

fingerprint image is then reconstructed by overlapping a set 

of partial images, which enables to remove distortion 

produced by the finger speed non-uniformity. Finally, single 

row sensors offer the lowest silicon surface, but fingerprint 

images may contain a great distortion with areas of different 

sweeping speed. This effect may reduce significantly the 

recognition performance of the system; this is the reason 

why dedicated algorithms have to be developed specifically 

for this latter type of sensors. 
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Fig. 2. Schematic of the measurement principle of the full matrix (left), 

partial matrix (center) and one row (right) fingerprint sensors and their 

relative output: the full scale image, the superposed images and the 

distorted image. 

In this paper, we detail a full fingerprint verification 

system for a single user application. The system has to 

confirm or deny a person's identity compared with a 

reference record ("Am I who I claim to be?"). The 

fingerprint verification system has been entirely developed 

in our laboratory and is composed of a digital integrated 

sensor and a programmable microcontroller that drives the 

sensor and records data. Specific fingerprint recognition 

algorithms are then processed for the moment with a 

computer but will be soon integrated into the 

microcontroller in order to have a stand-alone system.  The 

paper will begin in section II with a description of the 

acquisition system and general features of the sensor. A 

focus will be made on the particularities of images produced 

by the sensor. Then the paper will detail the entire 

recognition and verification process. The pre-processing 

step, which enables to enhance the quality of the fingerprint 

image is discussed in section III while section IV will report 

signature extraction which is based on minutiae features. 

Verification process that consists in matching the signature 

with the recorded one is described in section V. Finally, 

System performance evaluation is analyzed in section VI by 

means of both synthetic and real fingerprint databases. 

II. ACQUISITION 

Acquisition enables to get an image from the user's 

fingerprint and is the first step of a verification system. In 

this section we describe main features of the acquisition 

system and of the images produced by the sensor. 

A. The sensor 

The sensor, as depicted in Fig. 3, has two main features with 

respect to standard industrial solutions: it is a sweep sensor 

and it is a tactile, e.g. mechanical sensor. The sensor is build 

from an integrated bulk micromachining technology. So it 

combines both MEMS and electronics in the same substrate. 

As can be seen in Fig.3, three rows of 256 cantilevers are 

implemented in the sensor, however only one is actually 

used for measurement. It is possible to switch from one line 

to another. It has been made to further use several lines as a 

partial matrix sensor. Dimensions of the sensor are 

1.6x16mm. The spatial resolution is 508 dots per inch, 

which gives from 5 to 10 points between two ridges.  

 
Fig. 3 Schematic of the fingerprint sensor with piezoresistive cantilevers. A 

polymer protective sheet protects the sensor against abrasion and corrosion. 

In order to obtain a fingerprint image, the user has to sweep 

its finger on the surface of the sensor, perpendicularly to the 

chip. During this, the sensor scans the cantilevers line and 

measures the movement of cantilevers sequentially. The 

electronics and connection pads, placed on one side of the 

chip are protected by resin (see Fig.4). Since human skin 

could be strongly corrosive for electronics, a protective 

polymer sheet is laid on the surface of the sensor. Several 

materials have been tested and the best results were obtained 

with a 12"m polypropylene sheet. It has enough strength to 

protect the sensor and low stiffness to avoid blurring the 

mechanical signal.  

 
Fig. 4 Photo of the fingerprint mounted on a ceramic printed circuit board. 

A droplet of resin protects wirebonds. 

B. Fabrication process 

The sensor is made by means of a CMOS-compatible 

front-side bulk micromachining technology (FSBM). The 

CMOS is an Austriamicrosystems 0.6 "m triple metal 

process obtained via the Circuit-Multi-Projects[16] multi 

project wafer service. The FSBM technique consists in 

designing openings through the different CMOS layers so as 

to obtain naked silicon areas on the surface. The passivation 

(Silicon Nitride) layer acts as a mask for the post process 

etching. After the fabrication of the microelectronic layers, a 
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TMAH anisotropic wet etching post-process allows 

suspending microstructures by attacking the silicon with 

respect to the passivation where creating a cavity (see Figure 

3 and 5) on the silicon substrate. This technique is operated 

at chip level without the need of any additional lithographic 

process.  

Cantilevers are then composed of a sandwich of all the 

layers present in the CMOS technology: isolation oxide, 

gate oxide, polysilicon of the grid, deposited interlevel 

oxides, interconnection metallic layers and finally silicon 

nitride passivation layer. The total thickness is around 4 "m. 

This stable low cost MEMS technology allows integrating 

the sensor part and electronic circuits in the same chip. 

Figure 6 shows SEM micrograph of the chip after TMAH 

release of the cantilevers.  

 

 
Fig. 5 Cross section schematic of the CMOS compatible front side bulk 

micromachining technology employed for the fingerprint sensor. 

 
Fig. 6 Scanning electron microscope image of the cantilevers. 

C. Piezoresistive measurement 

The tactile measurement is based on the use of micro 

cantilever embedding a piezoresistive strain gauge (See 

Fig.3 and Fig.5). The cantilevers are made of a stack of 

insulating layers (SiO2 and Si3N4) and contain polysilicon 

and metal lines. The skin, swept along the sensor, induces 

downward deflection of cantilevers when it is in contact 

with the sensor’s surface. When there is no local contact, the 

case of a ridge, cantilevers remain flat. This tactile scheme 

works because cantilevers are small compared to a finger’s 

ridge period and because the skin, thanks to its elasticity, 

penetrates a little in the cantilever’s cavity. The bending of 

cantilevers induces a stress distribution in the material. The 

piezoresistive gauge made of polysilicon (the material used 

for the grids of transistors) is placed near the clamping of 

the cantilever. Its resistivity changes regarding the stress 

level in the material, through the longitudinal and transverse 

piezoresistive coefficients (Table 1). As the gauge is placed 

in the lower part of the cantilever’s thickness, below the 

neutral fiber plane, it is compressed when the cantilever 

bends downward. Within the maximum displacement, the 

resistance variation reaches 6%. Table 1 summarizes 

cantilevers parameters.  
TABLE I 

CANTILEVERS PARAMETERS 

Microbeam parameters value 

Length  100"m 

Widths  30"m 

Thickness  ~4"m 

Pitch  50"m 

Out of plane stiffness (computed)  186Nm
-1

 

In plane Stiffness (computed) 10075Nm
-1

 

Sensitivity  171 – 295 N
-1 

Natural frequency 690kHz 

Width of the micromachined cavity 210"m 

Polysilicon gauge parameters value 

Width  1.2"m 

Length  8x28"m 

Nominal resistance 6.5k! 

Nominal resistance mismatch 1.73% 

Longitudinal piezoresistive coefficient -1.3 10
-10  

Pa
-1

 

Transverse piezoresistive coefficient 7.6 10
-11  

Pa
-1

 

D. Read out integrated circuit 

The sensor embeds a read out integrated circuit (ROIC) 

that performs three main tasks: Scanning of the cantilever 

row, measure and amplification, and conversion to a digital 

signal. The sensor has digital input and output, its can be 

drive by a digital microcontroller. A photo of the chips is 

presented in Fig. 8 and schematic of the ROIC in Fig.7. 

Whole chip contains about 53,000 transistors 

The measurement of the stress gauge is made with a 

switch capacitor architecture in order to have an offset 

cancelling circuit, thus avoiding the use of a calibration step 

during operation.  

The sequential measurement of cantilevers is controlled 

by a shift-register composed of D flip-flop cells driven by a 

clock signal from 20 to 200 kHz. The gauge resistance 

circuit uses a correlated double sampling switch capacitor 

architecture driven by a pair of non-overlapping clocks (!1 

and !2). This architecture makes possible to cancel the DC 

offset caused by the op-amps and at the same time reduces 

low frequency noise. The pixel electronic allows performing 

a differential measurement between the gauge and a 

reference resistor placed above the bulk silicon where the 

mechanical strains are nonexistent. The gauge resistance 

change is transformed into a current signal and feeds a 

transresistance amplifier through the transmission line that is 

biased at a constant voltage. In this way it is possible to get 

rid of parasitic capacitance of this very long analog 

interconnect line (in the case of the first pixel, this line has a 

length of about 1.28 cm).  
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Fig. 7. Schematic of the Read Out Integrated Circuit. 

 

The analog signal is digitalized using an 8 bit converter so 

as to provide the value of the gauge resistance change by the 

way of a digital parallel bus. The implemented A/D 

converter uses successive-approximation architecture. It 

employs a simple folded resistor ladder. The comparator is 

based on offset cancellation switch capacitor architecture. 

The ADC can work up to 1 MSamples/s with a precision of 

7.7 effective bits. A detailed description of the internal 

circuits of the sensor is given in # [18]. 

 
Fig. 8. Photo of the chip showing the electronic circuits on the right and the 

beginning of the cantilevers line on the left.  

E. The acquisition driver 

The sensor chip is driven by means of a connection to an 

APEX development board from Altera [19], which executes 

the acquisition program. This board includes a 32bits NIOS 

processor placed on a FPGA circuit with 256kB of memory 

and is parameterized by means of a hardware configuration 

file that provides a great flexibility of use. The sensor and 

the board interact by means of four digital signals: 

- RESET initializes the sensor at the starting. 

- CLOCK specifies cantilever scan frequency and is also - 

used to feed the switch capacitor circuits.  

- LAST indicates the end of a row. 

- DATA corresponds to the byte value of the cantilever 

that has been read. 

The board is linked to a computer in order to load the 

driver and to retrieve images. A picture of the system is 

represented on Fig. 9. 

 
Fig. 9. Photo of the experimental platform which enables image acquisition. 

As the sensor works continuously, the output is composed 

of series of 256 bytes representing the scan of one row. 

These series of lines may form a rectangular image with an 

infinite height. So a specific program has been implemented 

in order to detect both starting and ending of the finger 

contact. By computing the sum of each line, we can detect 

the presence of a finger on the sensor. The difference 

between the presence and the absence of the finger is large 

thanks to the sensitivity of the cantilevers and the 

amplification circuit. So we have set a specific threshold in 

the 256 possible values that defines the beginning and the 

ending of the fingerprint scan (see Fig. 10). 

 
Fig. 10. Detection of the fingerprint area during finger sweep. 
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After each acquisition, the image is stored on a computer 

in order to visualize it on screen and to create a database of 

measured fingerprints for tests. This database is available for 

downloading in our server [20]. The cantilever scanning 

frequency was set to 100kHz; this means that the acquisition 

lasts about one second for a 256x390 image. After a training 

phase this turned out to be enough for most users. Indeed as 

shown on Fig. 11 the image height H varies roughly 

between 200 and 400 pixels.  

 
Fig. 11. Histogram of the image height from the fingerprint database. 

F. Main features of fingerprint images obtained with the 

sensor 

Fig. 12 shows an example of an image generated by the 

sensor. Because of the sweep mode we have a variable 

height H whereas the width W remains constant at 256pixels 

(i.e. the number of cantilevers). When analyzing the grey 

levels histogram we can notice the high contrast of the 

image. We have mainly a binary image: background is white 

whereas ridges are black with little shade. This observation 

implies that the user presses his finger on the sensor with a 

sufficient pressure. By looking at the background of the 

image we can highlight some particularities. First, we note 

the presence of vertical black lines. The reason of these 

black lines is the fracture of cantilevers. The latter are 

relatively weak and may break when an excessive or a non-

vertical pressure overloads them. A broken cantilever does 

not transmit electronic signal any more and behaves like a 

"dead pixel" (black point). Due to the sweep mode this will 

cause the presence of a vertical black line in the resulting 

image. If we watch the background more precisely we also 

see light grey vertical dotted line (as if some cantilevers 

slightly shake). This problem is currently still under 

consideration and seems to have an origin in the analog 

amplification chain. 

Inter-ridge spacing is roughly constant in a fingerprint. 

This assumption is verified for images originating from 

touch sensors. As we have a single-row pixel sensor without 

image reconstruction algorithm, speed non-uniformity 

during acquisition may generate a large inter-ridge distance 

variation (e.g. we can distinguish roughly 3 areas with 

distinct speed on Fig. 12). As the finger is moved vertically 

the distortion is small where ridges are vertical, whereas the 

sweeping mode effect may be considerable anywhere else. 

 
Fig. 12. Main features of raw images produced by the sensor. 

According to our observations and by assuming a trained 

and cooperative user we considered an inter ridge distance 

range (2) where ridge direction ! is roughly vertical, and (1) 

elsewhere. 

( ) [ ] [ ]cos >cos /8 3..15  pixels   B=2.3octaved! " # $ = $  (1) 

( ) [ ] [ ]cos cos /8 6..12  pixels   B=1octaved! "# $ % = %  (2) 

III. PRE-PROCESSING 

Once the fingerprint has been acquired, a pre-processing 

step is needed in order to enhance image quality. To do so 

we take benefit of particularities of fingerprint images and 

use a frequency domain filter.  

A. Segmentation 

The first step of the pre-processing is the segmentation of 

the image. The goal is to separate the foreground from the 

background [21]. The foreground corresponds to the 

fingerprint area in contact with the sensor during the 

acquisition. The background represents the noisy part 

around the fingerprint and contains no useful information. 

We have seen in section II that images have a very high 

contrast, this is the reason why we decided to use the mean 

grey value as segmentation feature. 

The image is first divided into non-overlapping blocks of 

16$16 pixels and the average grey value of each block is 

computed. If the latter is below a threshold T, then we 

consider the block belongs to background. As the grey 

values vary in the range [0..255] and as images are highly 

contrasted, we used T=128. An additional operation is 

performed on the mask in order to delete noisy areas: blocks 

with at least 3 neighbors labeled as background and blocks 

at the edges of the image are associated with the 

background. The complete operation is illustrated on Fig. 

13. The background is not processed in the subsequent 

operations; this enables a gain of calculation time and a 

more reliable feature extraction. 
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Fig. 13. Example of segmentation on a fingerprint image. 

B. Enhancement 

To improve fingerprint image quality, filters extensively 

exploit local features [22], i.e. the local ridge direction and 

frequency. 

1) Log-Gabor masks 

It is generally accepted that the average inter-ridge 

distance f0 does not vary much in a fingerprint, and Gabor 

filters are widely used because they have optimal resolution 

in both spatial and frequency domains ([23]-[26]). f0 is then 

determined statistically by taking an average value [24]. 

Nonetheless there may be slight variations due to the skin 

elasticity or between two distinct persons for a given 

population. In this case f0 is estimated locally to tune the 

filter [26]. In both cases the inter ridge distance is 

considered locally constant and the bandwidth of the filter 

does not exceed 1octave. As regards our sweep sensor this 

assumption is false as the speed can change in course of the 

acquisition according to the user's behaviour (see II). Here 

we need to extract broad spectral information such as 

%B=2.3octave (1). Unfortunately the maximum bandwidth 

of Gabor filters is limited to roughly one octave [27], this is 

the reason why we decided to use oriented Log-Gabor 

filters. The latter are defined in the frequency domain by the 

product of a radial component and an angular component: 

( ) ( ) ( ), rH f H f H
!

! != "
 (3) 

The radial component is a Gaussian function viewed on a 

logarithmic scale (4) where f0 is the tuning frequency, and "r 

determines the radial bandwidth of the filter. 

( )
( )

( )

2

0

2

0

ln
exp

2 ln
r

r

f f
H f

f!

" #$ %& &' (
= )* +

$ %& &' (, -  (4) 

The transfer function of the angular component is given 

by (5) where !0 represents the direction of the filter, and "& 

determines the angular bandwidth of the filter. 

( ) ( ){ }2 2

0exp / 2H
! !
! ! ! "= # #  (5) 

 
Fig. 14. Representation of radial (a), angular (b) and full mask components 

from the Log-Gabor function. 

If one compares them to Gabor filters, they allow 

arbitrarily broad bandwidth and they have always a zero DC 

component, they are thus a good alternative [27]. 

The radial bandwidth of the Log-Gabor function is 

defined by %B=log2(fmax/fmin) where fmax and fmin are the 

solutions of Hr(f)=1/2. We get: 

( )02 2 ln 2 ln rB f!" = #
 (6) 

2

0 max
2

F

f f
!

"

= #
 (7) 

By computing the angular bandwidth we get similarly: 

2 2ln 2
!

"#$ =
 (8) 

By using #$=%/8 and equations (1) and (2) according to 

the filter orientation, we get a bank of 8 oriented Log-Gabor 

masks. Assumption (2) is used to compute the horizontally 

oriented mask and enables to limit the vertical black lines 

effect observed in II. These masks are computed offline and 

are stored in the memory of the system. 

2) Masking 

The image is first divided into blocks of W&W pixels. 

Then the Fast Fourier Transform (FFT) of each block is 

computed and the local features of ridges inside the block 

(i.e. the direction and the frequency) are estimated. The 

direction enables to choose the corresponding mask whereas 

the frequency will be used in the matching step (see section 

V). Finally the block is masked with its associated oriented 

Log-Gabor filter, and the inverse FFT is computed to get the 

corresponding enhanced block. These operations are 

executed for all blocks from the foreground image and are 

illustrated on the next figure. 

 
Fig. 15. Principle of directional masking. 

W has to be a power of 2 in order to implement a fast 

computation of the FFT, furthermore overlapping blocks 

have to be used to avoid edge effects between adjacent 

blocks. We defined experimentally blocks of 32$32 pixels 

with an overlap of 24 pixels. 

IV. FEATURE EXTRACTION 

The fingerprint enhancement is followed by the signature 

extraction, which extracts the useful fingerprint properties 

for recognition. Most fingerprint verification systems use 

minutiae information and extensive researches have already 

been made in this field [28]. To extract the minutiae 

features, we have implemented the common approach, 

which consists in using a thinned representation of the 

enhanced fingerprint image. 

A. Binarisation and thinning 

The fingerprint image has to be binarized prior to the 
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thinning. As the Log-Gabor masks have a zero DC 

component, each filtered block has a null mean value. So we 

easily obtain a binary image by comparing each resulting 

pixel with zero. This can be done by applying the threshold 

directly at the output of the filtering step by means of a 

simple comparator. This enables a gain in time (a new image 

sweep is not needed to perform binarization), and a gain of 

memory (a binary digit is stored instead of a floating point 

number). 

Then the resulting binary image is thinned by means of a 

succession of morphological erosion operations. To do this 

task we used the Rosenfeld's algorithm [29] due to its 

simplicity, but numerous other approaches exist [30]. With a 

view to a possible hardware implementation this choice will 

have to be reviewed as it can reduce significantly the 

calculation time [31]. An example of the different steps 

leading to a skeletonized fingerprint is illustrated on Fig 13. 

 

Fig. 16. Illustration of the different steps of thinning on a sample fingerprint 

record from the sensor: acquired image (a), filtered image (b), binarized 

image (c) and thinned image (d). 

B. The signature file 

Once we have a skeleton of the fingerprint image it 

becomes very easy to detect minutiae by means of the 

Crossing Number (CN): 

( ) { }
8

1 8 0

1

1
 with  and 0,1

2
i i i

i

CN P P P P P P
!

=

= ! = "#  (9) 

CN(P) represents the number of ridges coming from the 

pixel P. It is computed for each black pixel (Fig. 17) and 

two values are considered: 

CN(P)=1: P is a ridge ending 

CN(P)=3: P is a bifurcation 

 
Fig. 17. Example of Crossing Number coding from the binary 

representation. 

Although simple this method causes the detection of 

numerous false minutiae as we can see on Fig. 18. More 

than hundred minutiae are detected while a fingerprint has 

roughly less than 100 true minutiae. An additional 

processing is thus necessary to remove the false information. 

To do this task we use empirical rules by considering that 

two true minutiae are seldom nearby in practice. We have 

applied the two following rules to the detected minutiae in 

order to eliminate quickly the maximum of false minutiae: 

- Minutiae at the boundary between the fingerprint and 

the background are deleted. 

- Two minutiae which are on the same ridge and whose 

distance is less than a defined threshold are removed. 

Other additional techniques have been proposed in 

literature ([32]-[34]) at the expense of a longer computation 

time. This has nonetheless proved to be enough in our case 

with roughly less than one hundred remaining minutiae after 

the cleaning step. 

For each validated minutiae Mi we extract 3 features: 

- The type ti: bifurcation or ridge-ending (1bit) 

- The coordinates in the image (xi,yi) (4bytes) 

- The local direction of the associated ridge given by the 

directional map: !i (4bytes) 

At the end we have a signature file  

   
S

N
= M

i
i ! 1..N!
"#

$
%& and M

i
= t

i
,x

i
, y

i
,"

i( ){ }   

which characterizes the user's fingerprint and whose size is 

less than 1kB. Compared with the fingerprint image whose 

size 64kB, we have a high gain in memory requirement. The 

different steps of the signature extraction from the thinned 

image are illustrated on the figure below (Fig.17). 

 

 
Fig. 18. Illustration of signature extraction from a thinned image (a) : 

detected minutiae (b), validated minutiae (c) and signature (d). 

V. VERIFICATION 

Our biometric system is based on verification, i.e. we are 

seeking to confirm or deny a person's identity compared 

with a reference record ("Am I who I claim to be?"). We can 

distinguish two stages: the enrolment and the matching. In 

course of the enrolment the user's signature SP is extracted 
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and stored in memory. Then, at each use, the user's extracted 

signature SQ is compared with SP during the matching step. 

Naturally these two signatures will always be different, even 

if they stem from the same user, due to the changes during 

the acquisition (speed, pressure, dust, skin elasticity…). To 

overcome this problem sensor distortion is first removed and 

then a matching score between SP and SQ is computed. 

Algorithms usually try to find an affine transformation to 

align SP on SQ [28]: 

1

' cos sin 0

' sin cos 0

' 0 0

x x x

y k y y

k

! !
! !

" " !#

# $% & % & % & % &
' ( ' ( ' ( ' (

= ) ) + $' ( ' ( ' ( ' (
' ( ' ( ' ( ' (
* + * + * + * +

 (10) 

where k, ' and (%x,%y) represent the scaling factor, the 

rotation parameter and the translation between the two 

fingerprints. In our case the finger moves always along the 

same direction, so we have no rotation parameter: '=0. This 

model performs well for matrix sensors but is utterly 

unsuitable for our sweeping mode sensor. Indeed we have 

seen that our acquisition method can cause image areas with 

great speed variations, hence a nonlinear factor k. Other 

mathematical models taking into account nonlinear local 

distortion created by skin elasticity have been proposed 

[35]-[38], but they are too long and not adapted for our type 

of distortion. As '=0, we are looking here a transformation 

like (11) where f and g are nonlinear functions which 

represent the speed variation in course of a vertical finger 

moving. 

( )

( )

'

'

' 0

x x x

y f y y

g! !

" # $" # " #
% &% & % &

= + $% &% & % &
% & % &% &' ( ' (' (

 (11) 

A. Distortion modelling 

Let us first consider a square block where ridges have 

roughly the same direction. We are seeking to estimate the 

local scaling factor k, which enables to get the 

corresponding block without distortion. In this case we can 

model the ridges by parallel lines as shown on Fig. 19. 

 
Fig. 19. Local vertical distortion modelling of a block. 

By considering the area ABCD and its corresponding 

scaled area A'B'C'D', we get the two following equations: 

tan ' tank ! !" =  (12) 

' sin sin 'r r! !" = "  (13) 

Then the scaling factor k can be expressed according to 

the parameters r, r' and !: 
2

2

2

1 '
1 sin

' cos

r r
k

r r
!

!
= " " #

 (14) 

In the real case the distortion factor k(x,y) is computed for 

each block (x,y) and has the following form: 

( )
( )

( ) ( )
( )

2

2

2

, 1
, 1 sin ,

cos , ,

global

global

rr x y
k x y x y

r x y r x y
!

!
= " #

 (15) 

where r(x,y) is the local inter-ridge distance, !(x,y) is the 

local ridge direction, and rglobal is the average inter-ridge 

distance in the non-distorted fingerprint image. r(x,y) and 

!(x,y) are given by the estimate of directional and 

frequential fields. To estimate rglobal we consider the set V of 

blocks whose direction is practically vertical: 

( ) ( ){ }max
,   sin , cosV x y x y! != "

 (16) 

As the finger is moved vertically the inter-ridge distance 

remains virtually unchanged in these areas. If V has a 

sufficient number of blocks, then a good estimate of rglobal 

can be obtained by an average of ridge separation on V, else 

rglobal is replaced by a constant value R0: 

( )
( ),

1
, if 

0 if 

MIN

MIN

B

x y V
global

B

r x y V N
Vr

R V N

!

"
# $%

= &
% <'

(

 (17) 

We have specified 
max

8! "= , 10
MIN
B
N =  and 

0 9R pixels= . 

Before computing k(x,y) some precautions have to be 

taken: 

If ridges are locally vertical, then the estimate of k is 

impossible because r=r' on Fig. 19. We have !(x,y)=%/2 and 

the result of (15) is undefined (division by zero). 

k(x,y) is a real number, thus the condition 

r(x,y)(rglobal·|sin!(x,y)| must be checked. This condition may 

be false due to errors in estimates of r(x,y) and !(x,y), the 

estimate of k is impossible in this case. 

The skin elasticity is insignificant compared with the 

distortion from the sweeping mode and the finger is moved 

vertically, we can so consider that k(x,y) is virtually constant 

for a given line y. For each line we define the average 

scaling factor ky (19) by the mean of k(x,y) where they are 

defined (18). 

( )
( ) ( )

( )

, sin ,

  
and ,

2

globalr x y r x y

S y x
x y

!

"
!

# $% &
' '

= ( )
*' '

+ ,  (18) 
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( )

( )

1
, if 

1 if 

x S y
y

k x y S y
S yk

S y

!

"
# $%

= &
% =$'

(

 (19) 

B. Distortion correction 

In the previous section we have generated a vertical 

distortion map where a scaling factor ky is credited to each 

image segment of size L&H (H is the block size and L 

corresponds to the image width). This enables to reconstruct 

the non-distorted image by interpolation where each 

segment has a new height H/ky as illustrated on Fig. 20.  

Nonetheless this reconstruction is useless at this stage 

because we now work on the signature file. The latter 

contains a set of minutiae Mi defined by (ti, xi, yi, !i). By 

applying the inverse distortion to the minutiae we can obtain 

the new features (ti, xi, yi', !i'). The new vertical coordinate 

results from (19) such as: 
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' +
"y

k
p

 (20) 

and the new local orientation value can be obtained from 

(12) and (15) as follows: 

( ) ( ) ( )( )

( )( )
( )

( )
1

, , ,

tan ,
, tan

,

x y x y g x y

x y
g x y

k x y

! !

!
! "

# =

$ %
= & '& '

( )

!

 (21) 

This model is not perfect because it is not continuous; 

nonetheless it enables to limit significantly the inter-ridge 

distance variations for a trained user. 

 
Fig. 20. Examples of reconstruction of undistorted fingerprints from the 

distortion map (use of bicubic interpolation with Matlab). 

C. Enrolment 

We have a fingerprint verification system for a single 

user. This consists in confirming or denying a person's 

identity compared with a reference record. To initialize the 

system the rightful user has first to record his signature SP in 

memory: this is the enrolment step. The distorted signature 

SP is first transformed into its corresponding non-distorted 

file EP by means of (20) and (21), and then EP is stored in 

memory. We also store the value P

globalr  (17) that will be used 

in course of the matching step. 

 
Fig. 21. Enrolment procedure. 

To ensure good performance of the verification system, 

the enrolled image has to satisfy three requirements: 

The image height H. Too small or too tall images are 

difficult to exploit, so we require H to be in the range 

[200..512]. 

The number of minutiae. Numerous false minutiae may 

remain in the case of too noisy images in spite of the pre-

processing. According to the histogram of validated 

minutiae we decided to fix a maximum threshold of 100 

minutiae. 

The fingerprint area. After the segmentation the 

remaining surface may be too small to collect enough useful 

information for verification. We specified a foreground 

percentage of 60% for enrolment. 

Other conditions may be applied by defining a quality 

factor [39]-[40], but they generate an additional computation 

time. 

D. Matching 

Once the enrolment has been performed the system is 

fully operational. At each use the user's signature SQ is 

extracted to be compared to SP. Two fingerprint images 

from the same person will of course be always different 

because they will be never acquired in strict similar 

conditions (noise, distortion…). Thus a matching score (MS) 

defining the similarity degree between SP and SQ is first 

computed, and then it is compared to a specified threshold in 

order to decide if the two signatures come from the same 

person. Before computing MS, the distortion from SQ is 

removed. Due to noise two signatures from the same person 

may have different ridge spacing, this is why the value P

globalr  

is used to remove the distortion from SQ. 

 
Fig. 22. Matching procedure. 

To match two signatures we look to find the best 

alignment of EQ on EP. As the distortion from sweeping 

mode has been removed, the matching consists in finding 

the translation (#x,#y) between the two sets: 

0

P Q

P Q

P Q

x x x

y y y

! !

" # " # $" #
% & % & % &

= + $% & % & % &
% &% & % & ' (' ( ' (  (Equ.22) 

The matching algorithm follows the 5 following steps: 
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We are looking for a minutiae reference pair 

( ),
R R

P Q

i j P QM M E E! " . To be a reference these two minutiae 

must have the same type (
R R

P Q

i jt t= ) and a roughly similar 

direction defined by ( ) ( )sin sin
R R MAX

P Q R

i j! ! !" <  and 10
MAX

R
! = ° . 

We have used a rigorous condition in order to limit 

calculations and potential candidates. 

The translation vector [ ],T x y! !  between 
R

Q

jM  and 
R

P

i
M  is 

computed: 
R R

Q P

j ix x x! = "  and 
R R

Q P

j iy y y! = " . 

EQ is then aligned on EP with respect to the reference pair 

by the transformation [ ],T x y! !  and we are looking for the 

matched minutiae. Two minutiae will unlikely overlap, thus 

we associate a bounding box of rectangular size L&H at 

each P

i
M . Q

jM  matches to P

i
M  if it falls into the box 

associated to P

i
M , i.e. if it checks (23). We have empirically 

determined [L,H]=[10,16] where H is larger than L to face 

with possible errors in distortion map. 

2

2

P Q

i j
P Q

i j
P Q

i j

x x x L
M M

y y y H

! + " # $%
& '( ) *+ ,

+ " # $%-  (23) 

For each matched pair we associate the quality factor 

( )
2

1 sink ijq != " #  with P Q

ij i j! ! !" = #  

Once we have found all matched pairs, we compute the 

corresponding quality value 
,

1
R R

m

i j k

k

q q
=

=!  which is the sum 

of quality factors. 

The four previous steps are executed for each reference 

pair and finally we compute ( ),
max

R Ri j
R

Q q=  which 

corresponds to the best alignment between the two 

signatures. 

Q represents the similarity degree between EP and EQ. A 

matching score is then computed according to |EP|, |EQ| and 

Q (24), and it is compared to a fixed threshold ) to decide if 

the user is authorized or not (the choice of threshold 

depends on the security settings of the intended application). 

( )/max ,P QMS Q E E=  (24) 

The choice of formula to compute MS may affect the 

performance of the system [41]. Different usual formulae 

were tested, but (24) gave the best results. 

VI. PERFORMANCE 

Due to the part of uncertainty in course of the matching, 

the decision to accept or reject a user may be erroneous. The 

performance evaluation consists in studying statistically the 

frequency of these incorrect decisions on a given fingerprint 

database [42]. Here the database (TDB) has been obtained 

by means of our sweep sensor and the acquisition driver 

described in section II, and it contains a set of 200 

fingerprint images which have been collected from 20 

different fingers with 10 samples per finger [20]. Three 

artificial databases have also been synthesized for tests by 

means of a fingerprint generator and a sensor modelling: 

- SDB1 represents the ideal case for a sweep sensor by 

both cooperative and trained users. Images are featured by a 

good placement of the finger and slight speed variations. 

- SDB2 contains extreme cases with a bad placement of 

the finger (laterally or longitudinally). 

- SDB3 simulates sudden and great speed variations in 

course of the acquisition. 

The use of artificial data is interesting as it enables a gain 

of time, an easy use and the simulation of extreme cases 

[43]-[44]. 

By computing the matching scores between the different 

pairs of fingerprint images from database, two kinds of error 

can be highlighted [45] according to the threshold decision t: 

- The False Matching Rate (FMR(t)): this corresponds to 

the percentage of unauthorized users who are accepted by 

the system. 

- The False Non-Matching Rate (FNMR(t)): this 

corresponds to the percentage of authorized users who are 

rejected by the system. 

- The Receiving Operating Characteristics curve (ROC), 

expressing FNMR(t) according to FMR(t) on a logarithmic 

scale, is then plotted to summarize the system performance 

and to compare results from different databases or 

algorithms. The results from our four databases are 

illustrated on Fig. 23. 

 
Fig. 23. Roc curves obtained from the four databases. 

As SDB1 represents the ideal case, it gives the best 

results. SDB2 gives lower performance; a bad placement of 

the finger may reduce the number of detected minutiae but 

also the lower fingerprint area makes more difficult the 

matching stage. SDB3 shows the limits of the distortion 

model applied to blocks and which is not continuous. If the 

speed changes are sharp or happens frequently during an 

acquisition, then the model is unable to handle efficiently 

the distortion. The resulting inter-ridge spacing and 

performance are altered. We see that TDB gives results 

roughly similar to SDB2. Users had first undergone a 

training stage before collecting their fingerprints for 

database creation. This short training stage allows capturing 

fingerprints with less irregular movements like the ones 

contained in SDB3. Nonetheless bad placements of the 

finger, particularly the lateral ones, are made unavoidable in 

the current conditions. This may be avoided by using a 

guiding system that would prevent the finger from going 

beyond sides of sensor. 

Finally there is a noteworthy point on the ROC curve 

where FMR is equal to FNMR: the Equal Error Rate (EER). 

EER represents the best trade-off between FMR and FNMR, 

and so it is sometimes used to give an idea about overall 

performance. However it has to be pointed out that in 

practice the efficiency of the system is narrowly linked to 

the intended application. Indeed high security settings 
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require low FMR to limit the acceptation of unauthorized 

users, whereas user convenience requires low FNMR to limit 

the rejection of authorized users. Consequently EER is not 

representative of performance from a particular application 

and is not a good choice to tune a system. Here we have 

EER=10.1% for TDB, this result is still far from those of 

state of the art algorithm but it is encouraging as the sensor 

is currently still at the experimental state. 

VII. CONCLUSIONS 

In this work we have developed a full fingerprint 

verification system based on minutiae features. This system 

employs a new kind of sweep sensor that uses a tactile 

measure of the fingerprint and has only a one-pixel row to 

acquire the image. These two particularities may cause a 

great image distortion according to the user's behavior and 

require a specific treatment to process images. To get rid of 

this distortion a bank of directional Log-Gabor masks have 

been used and a new distortion model has been 

implemented. Performance evaluation has given 

encouraging results and has shown that some improvements 

have to be made regarding the quality of images produced 

by the sensor. 

We are still coping with weakness of cantilevers and 

break of the later caused by high finger pressure (vertical 

line effect) or during fabrication. We are now focusing on 

new solutions to package efficiently the sensor. This will 

enable to improve image quality and to get better 

performance. Another encountered difficulty is the great 

distortion caused by the sweeping mode. Although the 

implemented distortion modeling performs well, this is not 

perfect especially in extreme cases. Minutiae features used 

by our system (i.e. position and direction) are very sensitive 

to speed changes, that is the reason why researches will be 

carried out in a near future to use more robust characteristics 

(e.g. the number of ridges between two minutiae). A 

specialized hardware device, which would measure the 

finger speed, is also under consideration in order to 

reconstruct directly the image with limited distortion at the 

expense of the price of the sensor chip. 
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