Single-Event Upsets in Substrate-Etched CMOS SOI SRAMs Using Ultraviolet Optical Pulses with Sub-Micrometer Spot Sizes

Dale McMorrow¹, <u>Ani Khachatrian^{1,2}</u>, Nicolas J-H. Roche^{1,3}, Jeffrey H. Warner¹, Stephen P. Buchner¹, Nderitu Kanyogoro^{1,2}, Joseph S. Melinger¹, Vincent Pouget⁴, Camille Larue⁴, Allan Hurst Jr.⁵ and Dan Kagey⁵

¹Naval Research Laboratory, Washington, DC
 ²Sotera Defense, Annapolis Junction, MD
 ³George Washington University, Washington, DC
 ⁴IES – CNRS, University Montpellier 2, Montpellier, France
 ⁵Trusted Semiconductor Solutions, Inc., Anoka, MN

This work is supported by the Defense Threat Reduction Agency and the Office of Naval Research

Pulsed Laser SEE Testing

MOTIVATION

 Laser SEE testing of highly scaled, high density circuits requires higher spatial resolutions than presently exists

SOLUTION

• Use the shorter wavelength of UV light that can be focused to a smaller spot size

APPROACH

- Demonstrate the validity and advantages of this approach using a densely packed 90 nm SOI SRAM with 0.3 μm diameter UV laser pulses

Spot-Size Comparison

UV SEE Optical Setup

Single-Event Effects in *Substrate-Etched* Devices and Development of a UV Beamline

UV Spot Size Measurement

FWHM Spot Size of 293 nm UV optical pulse is 0.32 μm

Test Vehicle

- 90 nm 4-Mbit CMOS/SOI SRAM
- Silicon Substrate removed to BOX using XeF₂ etch technique developed by NRL*

*N. Kanyogoro et.al., IEEE Trans. Nucl. Sci. Vol. 57, pp. 3414-3418, Dec. 2010

90 nm SRAM Layout

M3 and M1	Latch (N-channel)	
M4 and M2	Load (P-channel)	
M6 and M5	Access	

2D Error Mapping of SOI SRAM

2D Error Mapping of SOI SRAM

Sensitive transistors for all 1's highlighted in RED

2D Error Mapping of SOI SRAM

Sensitive transistors for all 1's highlighted in RED

Threshold Energy Determination

$$E_{dep} = E_{threshold} \left(T \cdot A \cdot F_{overlap} \right)$$

The laser pulse energy threshold, E_{threshold}, for SEUs is determined by varying the incident laser pulse energy, focus, and position until the minimum is found

	586 nm	293 nm
E _{threshold} (fJ)	770	45

Determination of Transmission and Absorption into Si

Determination of Overlap Integral $E_{dep} = E_{threshold} \left(T \cdot A \cdot F_{overlap} \right)$ Gaussian pulse overlaps active volume of Si 0.2 µm at 293 nm *F↓overlap* = 17% • at 586 nm $F \downarrow overlap = 2\%$ **0.32** μm BOX 170 nm Si 586 nm 293 nm Looking E_{dep} (fJ) 0.30 0.68 down from Q_{dep} (fC) 0.16 0.14 top

Equivalent LET Determination

*S. Buchner et.al., IEEE Trans. Nucl. Sci. Vol. 58, pp. 2976 - 2982, Dec. 2011

RADLAS 2013, September 19, 2013, Paris, FR

Effective Beam Diameter

Effective Beam Diameter

Spot-Size Comparison

<u>45 nm SRAM</u>

Laser pulse energy 25% above threshold: up to 4-bit errors

Laser pulse energy near threshold: mostly single, and a few double-bit errors

Maps for Individual Bit Errors near Threshold

Maps for Individual Bit Errors near Threshold

Maps for Individual Bit Errors near Threshold

Maps for Individual Bit Errors near Threshold

KEY RESULT:

- Direct

 observation of
 cell-to-cell
 variations in
 upset sensitivity
- Consequence of process
 variations

Conclusions/Summary

- Developed UV Beamline
 - 0.32 um FWHM laser spot
- Applied UV Beamline to investigate SEU in 90-nm SRAM
 - Determined SEU threshold
 - 2D Error maps
 - Identified sensitive areas
 - Revealed asymmetry in sensitivity due to cell-to-cell process variations
- Useful tool for analyzing RHBD designs in highly scaled technologies
- Working to optimize experimental setup to minimize mechanical and optical fluctuations